Home > freetb4matlab > plot > slice.m

slice

PURPOSE ^

% Plot slices of 3D data/scalar fields. Each element of the 3-dimensional

SYNOPSIS ^

function h = slice (varargin)

DESCRIPTION ^

% -*- texinfo -*-
% @deftypefn {Function File} {} slice (@var{x}, @var{y}, @var{z}, @var{v}, @var{sx}, @var{sy}, @var{sz})
% @deftypefnx {Function File} {} slice (@var{x}, @var{y}, @var{z}, @var{v}, @var{xi}, @var{yi}, @var{zi})
% @deftypefnx {Function File} {} slice (@var{v}, @var{sx}, @var{sy}, @var{sz})
% @deftypefnx {Function File} {} slice (@var{v}, @var{xi}, @var{yi}, @var{zi})
% @deftypefnx {Function File} {@var{h} =} slice (@dots{})
% @deftypefnx {Function File} {@var{h} =} slice (@dots{}, @var{method})
% Plot slices of 3D data/scalar fields.  Each element of the 3-dimensional 
% array @var{v} represents a scalar value at a location given by the
% parameters @var{x}, @var{y}, and @var{z}.  The parameters @var{x},
% @var{x}, and @var{z} are either 3-dimensional arrays of the same size
% as the array @var{v} in the 'meshgrid' format or vectors.  The
% parameters @var{xi}, etc respect a similar format to @var{x}, etc,
% and they represent the points at which the array @var{vi} is
% interpolated using interp3.  The vectors @var{sx}, @var{sy}, and
% @var{sz} contain points of orthogonal slices of the respective axes.
%
% If @var{x}, @var{y}, @var{z} are omitted, they are assumed to be 
% @code{x = 1:size (@var{v}, 2)}, @code{y = 1:size (@var{v}, 1)} and
% @code{z = 1:size (@var{v}, 3)}. 
%
% @var{Method} is one of:
%
% @table @code
% @item 'nearest'
% Return the nearest neighbor.
% @item 'linear'
% Linear interpolation from nearest neighbors.
% @item 'cubic'
% Cubic interpolation from four nearest neighbors (not implemented yet).
% @item 'spline'
% Cubic spline interpolation---smooth first and second derivatives
% throughout the curve.
% @end table
%
% The default method is @code{'linear'}.
% The optional return value @var{h} is a vector of handles to the
% surface graphic objects.
%
% Examples:
% @example
% @group
% [x, y, z] = meshgrid (linspace (-8, 8, 32));
% v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2));
% slice (x, y, z, v, [], 0, []);
% [xi, yi] = meshgrid (linspace (-7, 7));
% zi = xi + yi;
% slice (x, y, z, v, xi, yi, zi);
% @end group
% @end example
% @seealso{interp3, surface, pcolor}
% @end deftypefn

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:
Generated on Sat 16-May-2009 00:04:49 by m2html © 2003